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Abstract

This note presents a concise tutorial on energy-based generative mod-
eling and its natural progression toward score matching and diffusion mod-
els. It begins by motivating energy-based models, emphasizing their flex-
ibility alongside the challenges posed by unnormalized probabilities. The
tutorial then introduces score matching and its denoising variant as effec-
tive alternatives for learning in high-dimensional spaces. Subsequently, it
connects these concepts to diffusion models, demonstrating how iterative
noise removal techniques offer a unified framework for modern generative
modeling. Inspired by Stefano Ermon’s lectures [1], this note serves purely
as an educational tutorial based on existing materials, aiming to distill key
ideas into an accessible introduction for those interested in state-of-the-art
generative techniques without proposing any novel methods.
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1 Energy-based Models

Probability distributions p(x) are fundamental components of generative model-
ing. When constructing models to learn the underlying distribution of a dataset,
it is essential that these distributions satisfy basic properties:

A valid probability distribution p(x) must be non-negative and integrate (or
sum, in the discrete case) to one:

p(x) ≥ 0, and

∫
p(x) dx = 1. (1)

In the context of neural network-based generative modeling, ensuring non-
negativity is relatively straightforward—for instance, by squaring network out-
puts or applying exponential functions. However, enforcing that the distribution
sums to one, i.e., normalization, is significantly more challenging in practice.

1.1 From Unnormalized Functions to Energy Functions

When modeling probability distributions with neural networks, ensuring non-
negativity is relatively straightforward—one can, for instance, design a model
such that gθ(x) ≥ 0. However, enforcing that gθ(x) sums (or integrates) to one
over all possible outcomes is substantially more difficult. If

∑
x gθ(x) ̸= 1, the

function does not define a valid probability mass function or density.
One common strategy to address this challenge is to start with an unnor-

malized function. Instead of directly modeling a function gθ(x) ≥ 0, we define
an energy function fθ(x), and express the distribution as:

pθ(x) =
exp(fθ(x))

Z(θ)
, (2)

where

Z(θ) =

∫
exp(fθ(x)) dx (3)

is the partition function, which normalizes the distribution by accounting for the
total ”volume” of the unnormalized density. In some simple cases, such as the
Gaussian distribution, the partition function can be computed analytically. For

instance, for a Gaussian g(µ,σ)(x) = e−
(x−µ)2

2σ2 , the partition function evaluates

to
√
2πσ2. However, for most models of interest, computing Z(θ) in closed form

is intractable.
The exponential function is chosen because it not only guarantees non-

negativity but also naturally captures large variations in the data. This for-
mulation is closely connected to statistical physics, where similar expressions
emerge from the principle of maximum entropy.
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1.2 Energy-based Models

In energy-based models [2], the probability distributions are typically defined in
the following form:

pθ(x) =
1∫

exp(fθ(x)) dx
exp(fθ(x)), (4)

where exp(fθ(x)) ensures that the function is non-negative 1 and the normal-
ization factor 1∫

exp(fθ(x)) dx
guarantees that the resulting function is a valid

probability density. In this framework, we are free to use any neural network
architecture for fθ(x), and Eq. 4 ensures that the output defines a valid proba-
bility distribution.

The Challenge of Computing the Partition Function While this formu-
lation is highly flexible, computing the partition function Z(θ) exactly is often
intractable, particularly in high-dimensional spaces. The integral may involve
an exponentially large number of terms, making direct computation practically
impossible. This intractability underscores the need for alternative training and
sampling methods that circumvent the direct evaluation of Z(θ).

A useful observation is that not every operation involving such a function
requires computing the partition function. For example, when comparing two
samples x and x′, the partition function cancels out:

pθ(x)

pθ(x′)
=

exp(fθ(x))

exp(fθ(x′))
= exp

(
fθ(x)− fθ(x

′)
)
. (5)

This property is particularly advantageous in applications such as anomaly de-
tection or denoising (spoiler alert), where relative probabilities are more impor-
tant than absolute likelihood values.

1.3 Training Intuition

When training an energy-based model, the objective is to maximize

max
θ

exp fθ(xtrain)

Z(θ)
, (6)

for a given training dataset xtrain. Intuitively, the goal is to increase the numer-
ator while simultaneously decreasing the denominator. As illustrated in Fig. 1,
the desired outcome is to reduce the energy for correct points while increasing
the energy for incorrect points, thereby minimizing Z(θ).

To achieve this, instead of computing Z(θ) exactly, we use a Monte Carlo
estimate. Specifically, we sample a set of points from the model (to form the
negative samples) and use the points from xtrain as the positive samples, learning
to distinguish between them.

1The exponential family defined here arises under general assumptions from statistical
physics (e.g., maximum entropy and the second law of thermodynamics). In particular, the
term −fθ(x) is referred to as the energy. Intuitively, configurations x with low energy (i.e.,
high fθ(x)) are more probable.
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Figure 1: The goal of training an energy-based model.

Contrastive Divergence Algorithm. To train an energy-based model using
the contrastive divergence algorithm [3, 4], we sample xsample ∼ pθ and perform
a gradient step on

∇θ

(
fθ(xtrain)− fθ(xsample)

)
. (7)

Examining Eq. 6, maximizing the log-likelihood corresponds to solving the fol-
lowing optimization problem:

max
θ

[
fθ(xtrain)− logZ(θ)

]
. (8)

Note that the partition function Z(θ) depends on θ. Therefore, the gradient
we need to compute takes the form

∇θfθ(xtrain)−∇θZ(θ). (9)

The gradient of the log-likelihood consists of two components:

1. The gradient of fθ(xtrain), which is straightforward to compute.

2. A term involving the gradient of Z(θ), which can be expressed as an
expectation over the model’s distribution.

Computing the second term of the gradient is somewhat subtle. Given that
the gradient of Eq. 8 is

∇θfθ(xtrain)−
∇θZ(θ)

Z(θ)
, (10)

we can rewrite this expression as

∇θfθ(xtrain)−
1

Z(θ)

∫
∇θ exp

(
fθ(x)

)
dx

= ∇θfθ(xtrain)−
∫

exp
(
fθ(x)

)
Z(θ)

∇θfθ(x) dx. (11)
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Notice that in the second term, exp(fθ(x))
Z(θ) corresponds to the probability assigned

by the model to a data point x. Thus, the gradient we seek to compute for
optimizing the model parameters takes the form

∇θfθ(xtrain)− Exsample∼pθ

[
∇θfθ(xsample)

]
, (12)

where the first term is the gradient of the energy evaluated at a data point, and
the second term is the expected gradient with respect to the model’s distribu-
tion. Using a Monte Carlo approximation, we can estimate the expectation in

the second term by sampling xsample ∼ pθ = exp(fθ(x))
Z(θ) , yielding

∇θfθ(xtrain)−∇θfθ(xsample). (13)

1.4 The Sampling Process

Unlike autoregressive or flow-based models, sampling from an energy-based
model is non-trivial due to the difficulty in directly computing the probability
of individual samples. However, as previously mentioned, we can still compare
the relative likelihoods of two samples, x and x′, which is useful for sampling.
To leverage this property, we employ an iterative approach known as Markov
Chain Monte Carlo (MCMC) [5].

The process begins by initializing a sample x0 randomly at t = 0. At each
step, the sample is perturbed to generate a new candidate,

x′ = xt + noise.

If the proposed sample has a higher likelihood, i.e., fθ(x
′) > fθ(x

t), we accept
it as the next sample:

xt+1 = x′.

Otherwise, we accept it with probability exp(fθ(x
′)−fθ(xt)), ensuring occasional

downward moves to explore the distribution and avoid local optima. This pro-
cedure is repeated for T iterations. In theory, as T → ∞, the distribution of
samples converges to pθ(x). However, in practice, this method suffers from slow
convergence, particularly in high-dimensional spaces.

Improved Sampling with Langevin Dynamics A notable enhancement to
standard MCMC is the unadjusted Langevin Monte Carlo (Langevin MCMC) [6],
which incorporates gradient information to accelerate convergence. Instead of
a simple random perturbation, the update step follows:

xt+1 = xt + ϵ∇x log pθ(x)
∣∣∣
x=xt

+
√
2ϵzt, (14)

where zt ∼ N (0, I). This update rule combines a gradient ascent step that
moves the sample toward regions of higher probability with an additional noise
term to ensure exploration. Under appropriate conditions (T →∞ and ϵ→ 0),
this process guarantees convergence to the true distribution pθ(x).
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Figure 2: Score function provides an alternative view of the original function
where we look at data in terms of gradients instead of likelihoods.

A key advantage of Langevin MCMC in the context of energy-based models
is that the score function simplifies as ∇x log pθ(x) = ∇xfθ(x), eliminating the
need to compute the partition function. While this makes gradient computation
feasible, the method still suffers from slow mixing in high-dimensional spaces,
posing a challenge for effective sampling. This issue is particularly problematic
since sampling is essential for contrastive training of energy-based models, as
shown in Eq. 12.

Having established the fundamental role of energy-based models in capturing
complex distributions—along with the inherent challenge of computing the par-
tition function—we now transition to score matching. This approach sidesteps
the normalization issue by focusing on the gradients of log-density, setting the
stage for a more tractable learning objective that avoids direct partition function
estimation.

2 Score Matching

2.1 The Score Function

Recall that for an energy-based model, the probability density is defined as in
Eq. 4, so that the log-density can be expressed as

log pθ(x) = fθ(x)− logZ(θ). (15)

The score function [7] is defined as the gradient of the log-density with
respect to x:

sθ(x) := ∇x log pθ(x). (16)

Since logZ(θ) is independent of x — as the partition function normalizes the
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distribution and does not depend on individual data points — we can write

sθ(x) = ∇x log pθ(x) = ∇xfθ(x)−∇x logZ(θ)︸ ︷︷ ︸
=0

= ∇xfθ(x). (17)

Thus, the score function can be computed directly from the energy function
without requiring evaluation of Z(θ).

A simple example is the Gaussian distribution. In this case,

pθ(x) =
1√
2πσ2

exp

(
− (x− µ)2

2σ2

)
, (18)

where the normalization constant is 1√
2πσ2

. If we compute the score function

for this distribution, we obtain sθ(x) = −x−µ
σ2 .

Fig. 2 illustrates an intuitive interpretation of what a score function repre-
sents. Essentially, the score function provides an alternative perspective on the
underlying distribution: rather than describing the likelihood at each point, it
describes how the log-likelihood changes — that is, it gives the gradient with
respect to x. As shown in Fig. 2, the score function forms a vector field, where
each arrow indicates the direction of steepest ascent in log-likelihood. In the
case of Gaussian distributions, these vectors naturally point toward the means
of the Gaussians, indicating the most likely regions.

2.2 Training Objective

The training objective is defined by comparing two probability distributions p
and q through their respective vector fields of gradients, known as score func-
tions [8]. This comparison is formalized using the Fisher divergence:

DF (p, q) :=
1

2
Ex∼p

[
∥∇x log p(x)−∇x log q(x)∥22

]
. (19)

The key idea behind this formulation is that if p and q are similar, then their
respective score functions should also be close. Recall that the goal is to train
an energy-based model, where p represents the data distribution and q denotes
the model distribution. Importantly, this loss function in Eq. 19 depends only
on the score functions and therefore avoids explicit computation of the (log)
partition function.

2.3 Score Matching

The goal of score matching is to train the model without having to compute the
intractable partition function. Instead of matching the probability densities di-
rectly, as in maximum likelihood estimation, score matching focuses on aligning
their gradients—specifically, by minimizing the discrepancy between the score
of the data distribution ∇x log pdata(x) and the model’s score sθ(x). A natural
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way to quantify this discrepancy is through the Fisher divergence:

1

2
Ex∼pdata

[∥∥∥∥∇x log pdata(x)− sθ(x)︸ ︷︷ ︸
∇xfθ(x)

∥∥∥∥2
2

]
. (20)

Minimizing this divergence compels the model’s score function to closely ap-
proximate the score function of the data distribution.

However, while this formulation is elegant, it is not directly applicable in
practice because it involves ∇x log pdata(x), which is unknown. In practice, we
typically only have access to samples drawn from pdata(x). This raises a crucial
question: how can we approximate ∇x log pdata(x) using only these samples?

2.4 Overcoming the Unknown Data Score

The true score ∇x log pdata(x) is unknown, as we only have access to samples
from pdata. The key insight is to reformulate the objective in such a way that
the unknown term can be eliminated through integration by parts [7].

To illustrate the concept of integration by parts, let’s first consider the uni-
variate case (1D).

1

2
Ex∼pdata

[
(∇x log pdata(x)−∇x log pθ(x))

2
]

=
1

2

∫
x∼pdata

[
(∇x log pdata(x)−∇x log pθ(x))

2
]

(21)

It is a square of the difference, so expanding it results in three terms,

1

2

∫
pdata(x)(∇x log pdata(x))

2dx+
1

2

∫
pdata(x)(∇x log pθ(x))

2dx−

1

2

∫
pdata(x)∇x log pdata(x)∇x log pθ(x)dx (22)

The first term is independent of θ and can thus be ignored during optimization.
The second term depends solely on the model, making it relatively straightfor-
ward to compute. The third term is more interesting: it represents the cross
product between the model and the data distribution, and it still involves the
log of the data density, which is non-trivial to compute. To address this, we
apply integration by parts.
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Integration by Parts. Recall the integration by parts formula:
∫
f ′g dx =

fg −
∫
g′f dx. Applying this to the third term in Eq. 22, we get:

−
∫

pdata(x)∇x log pdata(x)∇x log pθ(x)dx

= −
∫

����pdata(x)
1

����pdata(x)
∇xpdata(x)∇x log pθ(x)dx

= −pdata(x)∇x log pθ(x)|∞x=−∞︸ ︷︷ ︸
=0

+

∫
pdata(x)∇2

x log pθ(x)dx (23)

In fact, we have now expressed it in terms of an expectation with respect to the
data distribution over the second derivative of the model’s score. This gives us
a more convenient term

∫
pdata(x)∇2

x log pθ(x) dx, which no longer depends on
the score of the data density. The only remaining issue is the expectation with
respect to the data density

∫
pdata(x), but it no longer involves the score of the

data.
Thus, returning to Eq. 21 and using the derived term from Eq. 23, we can

express the univariate score matching objective as:

1

2

∫
pdata(x)(∇x log pdata(x))

2dx︸ ︷︷ ︸
constant wrt θ

+
1

2

∫
pdata(x)(∇x log pθ(x))

2dx

+

∫
pdata(x)∇2

x log pθ(x)dx

= Ex∼pdata

[1
2
(∇x log pθ(x))

2 +∇2
x log pθ(x)

]
+ const. (24)

which we can compute and evaluate. Extending this to the multivariate case,
we have:

1

2
Ex∼pdata

[
||∇x log pdata(x)−∇x log pθ(x)||22

]
= Ex∼pdata

[1
2
||∇x log pθ(x)||22 + tr( ∇2

x log pθ(x)︸ ︷︷ ︸
Hessian of log pθ(x)

)
]
+ const. (25)

where the second term represents the trace of the Hessian.

2.5 Refined Training Paradigm

With the objective function in Eq. 25, we can train the model using score
matching through stochastic gradient descent. Given a mini-batch of samples
{x1, x2, . . . , xn} ∼ pdata(x), we can estimate the score matching loss of Eq. 25
with the empirical mean:

L =
1

n

n∑
i=1

[1
2
||∇xfθ(xi)||22 + tr(∇2

xfθ(xi))
]

(26)

10



Luckily, there is no need to sample from the energy-based model in order to
train the model.

While score matching offers a compelling alternative to likelihood-based
training, it introduces computational challenges when evaluating higher-order
derivatives. To address this, we shift our focus to denoising score matching,
where the introduction of controlled noise simplifies the estimation of score
functions. This not only alleviates computational burdens but also improves
robustness in high-dimensional settings.

3 Denoising Score Matching

Denoising score matching [8] is a method designed to address the computational
challenges posed by the trace of the Hessian in high-dimensional settings with
large models. The key idea is that, rather than estimating the gradient of the
clean data distribution, this approach aims to estimate the gradient of the data
that has been perturbed with noise. It turns out that it is computationally
easier to estimate the score of the distribution of the noisy data compared to
estimating the score of the clean data. If the added noise is relatively small,
this method provides a good approximation of the score of the clean data.

Denoising score matching. Given the data distribution pdata(x), we use a
noising mechanism to add noise to the samples, qσ(x̃|x), giving us the distri-
bution of noisy data qσ(x̃). Then the goal is to match the score of the noise-
perturbed distribution via the Fisher-divergence:

1

2
Ex̃∼qσ

[
||∇x̃ log qσ(x̃)− sθ(x̃)||22

]
=

1

2

∫
qσ(x̃)||∇x̃ log qσ(x̃)− sθ(x̃)||22 dx̃

(27)

Similar to before, we can expand this term by integration by parts, leading
to

1

2
Ex∼pdata(x),x̃∼qσ(x̃|x)

[∣∣∣∣sθ(x̃)−∇x̃ log qσ(x̃|x)
∣∣∣∣2
2

]
+ const. (28)

in which computing ∇x̃ log qσ(x̃|x) is very easy, assuming it is a Gaussian,
qσ(x̃|x) = N (x̃|x, σ2I). This means, ∇x̃ log qσ(x̃|x) = − x̃−x

σ2 . Putting this term
in Eq. 28 (basically a denoising objective), it becomes very efficient to optimize
for very high-dimensional data. On the negative side, this cannot estimate the
score of the noise-free data.

3.1 Training with SGD

Now, given a mini-batch of data points {x1, x2, . . . , xn} ∼ pdata(x), we can have
a perturbed mini-batch {x̃1, x̃2, . . . , x̃n} ∼ qσ(x̃) where x̃i ∼ qσ(x̃|x). Then in
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Figure 3: Left: Computed scores sθ(x). Middle: Via MCMC and following
the scores, the model generate samples that fall into local minima. Right: Via
Langevin MCMC and following noisy scores, it is guaranteed to generate samples
from the underlying data density.

the case of Gaussian perturbation, the objective becomes as simple as

1

2n

n∑
i=1

[∣∣∣∣∣∣sθ(x̃i)−
x̃i − xi

σ2

∣∣∣∣∣∣2
2

]
(29)

To optimize this term, what sθ is trying to achieve is to match the amount of
Gaussian noise that has been added to the data. Writing the loss in expectation,
and by reparameterizing with x̃ = x+ σz where z ∼ N (0, I), the loss becomes:

1

2
Ex∼pdata, z∼N (0,I)

[∥∥∥sθ(x+ σz) +
z

σ

∥∥∥2
2

]
. (30)

Alternatively, by defining a noise-prediction network ϵθ(·) such that ϵθ(x +
σz) = −σ sθ(x+ σz), the objective can be written as:

1

2
Ex,z

[
∥ϵθ(x+ σz)− z∥22

]
. (31)

How to sample? Via MCMC and given a computed score function sθ(x)
(which is basically similar to the vector field depicted in Fig. 2), we can follow
the scores in an iterative process and update an initial pure noise sample into
x̃t+1 = x̃t +

ϵ
2sθ(x̃t). However, we know that this will lead to converging into

local optima. Same as before, we can use Langevin MCMC and follow the noisy
scores. In this case, we first need to sample a noise vector zt ∼ N (0, I) and the
update would be x̃t+1 = x̃t+

ϵ
2sθ(x̃t)+

√
ϵzt. If doing this iterative sampling for

long enough, it is guaranteed to produce samples from the underlying density,
as illustrated in Fig. 3.

3.2 Langevin Dynamics Sampling

The Langevin dynamics sampling follows these steps to sample from p(x) using
only the scores ∇x log p(x):
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Figure 4: (Top) In the region that data density is high, the estimated scores are
more accurate compared to regions where low data density. (Bottom) If we add
noise to the data, we cover more space and thus estimated scores will be more
accurate.

• Initialize x0 ∼ π(x), some noise distribution

• Repeat for t← 1, 2, . . . T :

– zt ∼ N (0, I)

– xt = xt−1 + ϵ
2∇x log p(x

t−1) +
√
ϵzt

• If ϵ→ 0 and T →∞, it is guaranteed to have xT ∼ p(x).

We can combine Langevin dynamics and score estimation, then sθ(x) ≈ ∇x log p(x).
Unfortunately, on high-dimensional real data, such as images, the simple

Langevin dynamics sampling fails to work. There are multiple reasons for this.
One main challenge is related to dealing with low data density regions. As illus-
trated in Fig. 4 (top), for regions where we have no samples, the estimated scores
are far from accurate, since the model does not see any samples to minimize its
error on the scores. Another issue with Langevin dynamics sampling is that it
basically cannot handle mixing dynamics between data modes. Assuming we
have two modes where we have far more samples on one mode than the other,
the model basically cannot correctly model that. If we sample many points, we
see that while the locations of points may be correct, the density is not.

These challenges can be addressed, to some extent, by adding (Gaussian)
noise to the data. In fact, if we add a large amount of noise to, e.g., the data
distribution depicted in Fig. 4 (bottom), then samples will be spread across the
entire space, and thus the added noise provides useful directional information
for Langevin dynamics. This, however, comes at the cost of not approximating
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Figure 5: (Top) Multiple noise scales used to add noise to the data. (Middle)
The estimated score function given different noise scales. (Bottom) Example of
generating data with different noise scales. Process starts from right to left.

the true data density (but a highly noisy version of it). In other words, in this
scenario, the model learns to estimate a more accurate score of a less accurate
(noisy) data. Note that the difference between this and the denoising score
matching discussed above is the scale of the noise. The assumption of the
denoising score matching is that the noise that is being added to the data is
small, and here the problem of low-density regions is being addressed by adding
a large amount of noise.

The solution to this problem is Annealed Langevin Dynamics [8], in which
the idea is that instead of choosing one noise scale, either small or large, we
choose to have multiple noise scales, annealed from large to small.

As illustrated in Fig. 5, the annealed Langevin dynamics starts by sampling
data points using different amounts of noise scales σ1, σ2, . . . , σL, sequentially.
Starting from the largest noise scale, we generate samples that initialize the
process for the following noise scales. As shown in Fig. 5 (Bottom), the initial
samples look like random noise simply because the noise scale is too large.
However, such samples initialize another Langevin dynamics procedure with a
smaller noise scale. We continue this process, making the noise scale smaller,
and thus see more structure in the generated samples. This is achieved by
training a noise-conditioned score-based model, wherein the noise scale is also
provided as the input to the model.

14



3.3 Noise Conditional Score-based Model

This is very similar to denoising score matching since the goal is to estimate the
score of the perturbed data distributions. The objective function to train such a
model is thus the weighted combination of denoising score matching losses (for
all noise scales):

1

L

L∑
i=1

λ(σi)Eqσi
(x)

[
||∇x log qσi

(x)− sθ(x, σi)||22
]

(32)

When dealing with data at different noise levels, we use an objective function
in the form of

1

L

L∑
i=1

λ(σi)Ex∼pdata,z∼N (0,I)

[
||∇x̃ log qσi

(x̃|x)− sθ(x̃, σi)||22
]
+ const.

=
1

L

L∑
i=1

λ(σi)Ex∼pdata,z∼N (0,I)

[∣∣∣∣∣∣sθ(x+ σiz, σi) +
z

σi

∣∣∣∣∣∣2
2

]
+ const. (33)

in which λ(σi) determines how much we should care about the quality of the
denoiser at the noise level i. The goal of this term is to balance different score
matching losses in the sum, thus one option is λ(σi) = σ2

i . Adding this term to
Eq. 33 and bringing it into the sum, we can re-write the objective as

1

L

L∑
i=1

Ex∼pdata,z∼N (0,I)

[
||σisθ(x+ σiz, σi) + z||22

]
=

1

L

L∑
i=1

Ex∼pdata,z∼N (0,I)

[
|ϵθ(x+ σiz, σi) + z||22

]
(34)

3.4 Training Noise Conditional Score-based Model

Training with stochastic gradient descent, similar to the other cases we saw
earlier, starts with sampling a mini-batch of data points {x1, x2, . . . , xn} ∼
pdata(x). We also sample a mini-batch of noise scale indices {i1, i2, . . . , in} ∼
U{1, 2, . . . , L}, where L is the number of noise levels. We then sample a mini-
batch of Gaussian noise vectors {z1, z2, . . . , zn} ∼ N (0, I). This would be
enough to estimate the weighted mixture of score matching losses

1

n

n∑
k=1

[
||σiksθ(xk + σikzk, σik) + zk||22

]
(35)

to encourage the score network to solve the denoising problem for every data
point at different noise levels. This is as efficient as training a single non-
conditional score-based model.
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Figure 6: Infinite noise levels: Finite noise levels can be seen as slices of the
infinite noise levels.

How many noise levels? The noise conditional score matching is very ele-
gant. However, there are a few things to keep in mind. The number of noise
levels during training and generation time should be the same. Also, it is best
if the number of noise levels is relatively large. But how many? Can we have
infinite noise levels?

Infinite noise levels. As illustrated in Fig. 6, we can actually have infinite
noise levels, with discrete finite noise levels, as discussed above, being seen as
slices over the infinite alternative. We can use stochastic processes to sam-
ple many data points along the x-axis (different slices indexed by t) and get
{xt}t∈[0,T ], each with an associated probability density {pt(x)}t∈[0,T ], repre-
senting data density plus noise. We can now describe the evolution of these
random variables over time with stochastic differential equations (SDEs).

Building on the denoising approach, we recognize that injecting noise nat-
urally leads to a continuous description of the noising process. This insight
motivates the formulation of stochastic differential equations (SDEs) to capture
the evolution from data to pure noise. The SDE framework provides a rigorous
mathematical tool to describe and reverse this process, thereby linking score
estimation with stochastic sampling dynamics.

4 Stochastic and Ordinary Differential Equations

Stochastic differential equations (SDEs) [9] offer a continuous-time framework
for modeling the evolution of a data point under both deterministic and stochas-
tic influences. In this context, SDEs describe how a clean data sample is progres-
sively transformed into pure noise [10]. More importantly, SDEs also provide a
means of reversing this process to generate new samples.
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Figure 7: Reverse stochastic process.

4.1 Stochastic Differential Equation

Given a set of random variables {xt}t∈[0,T ], the changes in these variables can
be described by stochastic differential equations (SDEs):

dxt = f(xt, t) dt+ g(t) dwt (36)

In this equation, the term f(xt, t) is called the deterministic drift, while dwt

represents the infinitesimal noise at each step, making the transition stochastic.
This describes the process of transforming data into pure noise.

A common simplification of this process is given by

dxt = σ(t)dwt (37)

which represents a purely stochastic evolution that gradually injects noise into
the data.

4.2 Reverse Stochastic Processes

In this process, we reverse the direction of time in SDEs, moving from pure
noise back to data, which is also known as the generation process.

The reverse SDE, for t : T → 0, is given by

dxt = −σ(t)2 ∇x log pt(xt)︸ ︷︷ ︸
the score function

dt+ σ(t) dw̄t (38)

where ∇x log pt(xt) is the time-dependent score function and dw̄t represents a
reverse-time Wiener process. By utilizing the score function, we can use the
process in Eq. 38 to generate data from noise. To this end, we can train a
neural network to learn a time-dependent score-based model:

sθ(x, t) ≈ ∇x log pt(x) (39)

This is exactly similar to the previous explanation, but instead of using a finite
number of steps (e.g., 1000 noise levels), we now have an infinite number of
steps. Consequently, the training objective would be:

Et∈U(0,T )

[
λ(t)Ept(x)

[
||∇x log pt(x)− sθ(x, t)||22

]]
(40)
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Figure 8: Casting the SDE to an ODE.

Once trained, we can use this model to represent the time-dependent score
function and employ it in the reverse SDE process to generate data samples:

dxt = −σ(t)2sθ(x, t)dt+ σ(t)dw̄t (41)

This is a correct SDE, and the only step left is to solve it! Luckily, this is a
well-established problem, and there are numerical methods to solve SDEs. One
simple solution, called Euler-Maruyama, is to discretize time and solve:

x← x− σ(t)2sθ(x, t)∆t+ σ(t)z (42)

where z ∼ N (0, |∆t|I) and t← t+∆t. This is very similar to Langevin dynam-
ics, where we follow the scores sθ(x, t) and add a little bit of noise, σ(t)z, at
every step. The process is illustrated in Fig. 7. The advantage of this approach
is that we don’t have a fixed number of steps that must match during both
training and generation. We can choose any number of steps during generation.

After establishing the role of SDEs in modeling the noising process, we note
that under certain conditions, the stochastic evolution can be equivalently cap-
tured by a deterministic ordinary differential equation (ODE). This probability
flow ODE not only provides insights into the underlying dynamics but also en-
ables efficient and invertible mappings, similar to continuous normalizing flows.

4.3 Ordinary Differential Equation

With the mechanism of SDEs for transitioning from data to noise distribution, it
turns out that we can describe the same stochastic process with exactly the same
marginals using a purely deterministic mapping. This is achieved by ordinary
differential equations (ODEs) [11]. An equivalent ODE for a simple SDE of
dxt = σ(t)dwt is

dxt

dt
= −1

2
σ(t)2∇x log pt(xt) (43)

which depends only on the score function. An illustration is provided in Fig. 8.
The ODE provides a unique trajectory for each initial condition, yielding an
invertible mapping similar to continuous normalizing flows. In other words,
this machinery defines a continuous-time normalizing flow, where the invertible
mapping is obtained by solving the ODE. A notable property is that the mapping
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from the data distribution to the noise distribution provides us with a latent
representation of the data, which follows a simple distribution.

The deterministic formulation via ODEs paves the way for a novel interpre-
tation of sampling methods. By drawing parallels between the iterative nature
of Langevin dynamics and the encoder-decoder structure of variational autoen-
coders (VAEs), we uncover a unifying perspective. This connection emphasizes
how sequential denoising can be seen as a hierarchical generative process, en-
riching our understanding of both frameworks.

5 Langevin Dynamics as VAEs

As discussed earlier and illustrated in Fig. 5, annealed Langevin dynamics [8]
involves a sequential denoising process, where one starts from pure noise and
progressively refines the sample using a series of noise scales {σ1, σ2, . . . , σL}.
At each stage, the data is perturbed with a specific noise level, and an iterative
denoising process gradually refines the sample. Now, let us examine this process
from the perspective of variational autoencoders (VAEs) [12].

5.1 The VAE Analogy

In annealed Langevin dynamics, the goal is to model the distribution of data
perturbed with different levels of noise. Considering the entire Langevin chain,
sampling involves going from pure noise to clean data. To train such a model,
however, we use the inverse of this process by iteratively adding Gaussian noise,
enabling us to train with the denoising score matching loss from Eq. 28. Looking
at both processes, this closely resembles a variational autoencoder (VAE), where
the inverse process (going from data to noise) is analogous to the VAE encoder,
and the denoising process is analogous to the VAE decoder. However, instead
of a one-step encoding and decoding process, this procedure is sequential.

Encoder (Forward Process). More formally, the forward process adds Gaus-
sian noise to clean data x0 over T steps, gradually converting it into nearly pure
noise xT . The noise-perturbed densities are obtained by adding Gaussian noise
of the form

q(xt|xt−1) = N (xt;
√

1− βtxt−1, βtI) (44)

This process defines a joint distribution q(x1:T |x0) =
∏T

t=1 q(xt|xt−1), which all
are Gaussians. This process can also be expressed in closed form as

q(xt|x0) = N (xt;
√
ᾱtxt−1, (1− αt)I) (45)

where ᾱt =
∏t

s=1(1 − βs). It is important to note that q(xt|x0) is also a
Gaussian distribution. This is important because it is efficient to compute with
the Gaussian assumption. This forward process is analogous to the encoder in
a VAE, mapping data to a latent (noisy) representation.
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Decoder (Reverse Process). The reverse process, which converts noise back
to data, parallels the decoder in a VAE. Here, sample xT from the noise distri-
bution, π(xT ) (i.e., the pure noise), and then iteratively sample from the true
denoising distribution q(xt−1|xt). This procedure would perfectly work if the
denoising distribution q(xt−1|xt) is known, which is not, unfortunately! The
solution is to learn a variational approximation of the denoising distribution.

Since the true reverse conditional q(xt−1 | xt) is intractable, we learn a
variational approximation:

pθ(xt−1|xt) = N (xt−1;µθ(xt, t), σ
2
t I) (46)

where µθ(xt, t) is predicted by a neural network that denoises xt to produce
xt−1.

The problem is then to approximate the true denoising distribution q(xt−1|xt)
with pθ(xt−1|xt). Once achieved, the joint distribution can be defined as pθ(x0:T ) =

p(xT )
∏T

t=1 pθ(xt−1|xt). The key point here is that we choose the parameter ᾱt

of Eq. 45 such that at step T there is no signal-to-noise at the end (ending up
in a known distribution) and we end up with pure noise, i.e., ᾱ → 0 after a
sufficiently large number of steps.

Recall, in order to train the VAE, we optimize the variational lower bound
(aka ELBO) [12], that is

Eqϕ(z|x)

[
log p(z, x; θ)− log qϕ(z|x)

]
(47)

5.2 Hierarchical Structure and the ELBO

The analogy to the iterative denoising process is the hierarchical VAE [13],
wherein instead of generating a data point directly from the latent code z, we
generate it iteratively, p(x, z1, z2) = p(z2)p(z1|z2)p(x|z1), in which we start by
z2 ∼ N (0, I) (i.e., the prior), then sample z1 from the decoder p(z1|z2) and
similarly sample x from the decoder p(x|z1). In this case, we can define the
ELBO as

Eq(z1, z2|x)︸ ︷︷ ︸
the encoder

[
log

(p(x, z1, z2)
q(z1, z2|x)

)]
(48)

With the VAE analogy providing an intuitive bridge between iterative sam-
pling and latent variable models, we naturally extend these ideas to score-based
diffusion models. In this section, we bring together the concepts of noise injec-
tion, score estimation, and variational inference to form a comprehensive gen-
erative framework that leverages the strengths of both denoising and diffusion
processes.

6 Score-based Diffusion Models

Diffusion models [14] extend ideas from denoising score matching and hierarchi-
cal VAEs into a framework with many latent variables. Instead of using a few
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Figure 9: Training and sampling from a diffusion model (DDPM).

discrete noise levels, these models employ a long sequence—or a continuum—of
latent variables that transform pure noise into data, unifying previous methods
while leveraging the strengths of iterative denoising.

6.1 The Hierarchical VAE Analogy

What we discussed above on the hierarchical VAEs is basically what happens
in diffusion models. Looking at the two latent variable scenario in Eq. 48,
this can be extended to T latent variables, wherein we have the joint decoding
distribution pθ(x0:T ) = p(xT )

∏T
t=1 pθ(xt−1|xt), i.e., going from pure noise to

clean data. We also have the encoder q(x1:T |x0) =
∏T

t=1 q(xt|xt−1), which is
all fixed (just adding noise to the data). Similar to the hierarchical VAE loss of
Eq. 48, we minimize an ELBO loss

Eq(x0)[− log pθ(x0)] ≤ Eq(x0)q(x1:T |x0)

[
− log

pθ(x0:T )

q(x1:T |x0)

]
(49)

Since the encoder is fixed, unlike a VAE, computing the ELBO loss of Eq. 49
is simpler than that of the VAE. The decoder is pθ(xt−1|xt) = N (xt−1|µθ(xt, t), σ

2
t I).

Basically, the decoder is a neural network that computes the means of the Gaus-
sians, which can be written as

µθ(xt, t) =
1√

1− βt

(
xt −

βt√
1− ᾱt

ϵθ(xt, t)
)

(50)

which contains a neural network ϵθ(xt, t) that aims at predicting the noise at
step t which we use to subtract it from the actual xt. Using this decoder
parameterization in Eq. 49, we can simplify the ELBO loss as

L = Ex0∼q(x0),t∼U{1,T},ϵ∼N (0,I)

[
λ(t)

∥∥∥ϵ− ϵθ

(√
ᾱt x0 +

√
1− ᾱt ϵ, t

)∥∥∥2
2

]
, (51)

Eq. 51 is the denoising score matching loss. Although we started from the
perspective of a VAE and thus wrote the loss function with ELBO, given the
design choice of the decoder, we ended up with a score matching loss func-
tion. The difference between a diffusion model and score matching lies in the
sampling. In score matching, we generate a sample using Langevin dynamics,
whereas here we go through the decoding process. The pseudo-code for training
and sampling of such a model is shown in Fig. 9.
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6.2 Infinite Noise Levels

The actual heat diffusion process is a continuous-time process rather than dis-
crete 2. In our modeling of the diffusion process, we can use an SDE to explain
the noising process (as in Eq. 36). To generate the samples, we can use the
reverse SDE and go in the reverse direction, as in Eq. 38. Similarly to what was
discussed before regarding the reverse SDE, there is a closed-form solution for
Eq. 38 given a known score function.

Again, similar to what we discussed earlier in this note, we can have an
ODE-equivalent of an SDE (see Eq. 43). Converting the SDE to ODE, we can
consider the machinery as a continuous-time, infinite depth normalizing flow,
wherein ODE solutions are unique (invertible mapping). To invert the mapping,
we can solve the reverse ODE (the generation process).

Casting the ODE to a normalizing flow has several benefits. First, we can
now evaluate the likelihood of a data point via the change-of-variable formula.
To this end, starting from a data point, we solve the inverse ODE to compute
the corresponding point in the latent space, evaluating its likelihood in the
prior distribution, and then use the change-of-variable formula to get the data
likelihood, as in

log pθ(x0) = log π(xT )−
1

2

∫ T

0

σ(t)2tr(∇xsθ(x, t))dt (52)

Having detailed the construction of score-based diffusion models, let’s focus
on practical considerations.

6.3 The Diffusion Process

Forward (Noising) Process: The forward process corrupts the data over T
steps:

q(x1:T | x0) =

T∏
t=1

q(xt | xt−1), (53)

where each transition is given by:

q(xt | xt−1) = N
(
xt;

√
1− βt xt−1, βtI

)
. (54)

In closed form, this process can be expressed as:

q(xt | x0) = N
(
xt;
√
ᾱt x0, (1− ᾱt)I

)
, (55)

with ᾱt =
∏t

s=1(1− βs).

2Something like the one illustrated in Fig. 6.
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Reverse (Denoising) Process: To generate new samples, we reverse the
forward process. Starting from a simple prior p(xT ) (e.g., a standard Gaussian),
we define:

pθ(x0:T ) = p(xT )

T∏
t=1

pθ(xt−1 | xt), (56)

with the reverse transitions modeled as:

pθ(xt−1 | xt) = N
(
xt−1;µθ(xt, t), σ

2
t I
)
. (57)

Here, µθ(xt, t) is parameterized by a neural network that effectively denoises xt

to produce xt−1.

Training Objective: The training objective resembles the denoising score
matching loss. Typically, the network is reparameterized to predict the noise
ϵθ(xt, t) rather than directly predicting the mean. This results in a loss function:

L = Ex0,t,ϵ

[
λ(t)

∥∥∥ϵ− ϵθ

(√
ᾱt x0 +

√
1− ᾱt ϵ, t

)∥∥∥2] , (58)

where λ(t) is a weighting term balancing contributions across time steps.

6.4 Accelerated Sampling

When we convert the problem to solving an ODE, we can explore efficient sam-
pling strategies 3.

For instance, DDIM [15] is often used as a sampling strategy in which, instead
of going through, say, 1000 steps of denoising (as in DDPM [14]), we coarsely
discretize the time axis (taking very big steps in time), e.g., taking only 20
steps. Although there is likely to be numerical errors as we take bigger steps, it
is much faster, and the quality of samples is still good (speed-quality trade-off).
Note that the score function (the marginals) is fixed once trained, and only the
sampling strategy is different when we solve the SDE or the ODE with the same
score function.

Another nice technique is distillation. The trick is to use DDIM as a teacher
model to solve the ODE at some discrete time steps. Then, we can train a
student model (another score-based model) to estimate, in a single step, what
the DDIM would do in two steps. Basically, the student learns a new score
function that in a single step represents what the teacher’s score would do in
two steps. We can do this iteratively and use such a student as a teacher
for another student that learns to skip even further. This technique is called
progressive distillation [16].

Another extreme example of distillation is consistency models [17], in which
the authors proposed a solution to solve the ODE, going from the noise distri-
bution π(xT ) to the data distribution pθ(x0) in a single step.

3Typically, while with an SDE it may lead to higher quality samples, with an ODE, there
are more efficient sampling solutions.
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7 Conclusion

This tutorial has presented a comprehensive framework unifying several ad-
vanced concepts in generative modeling:

• Energy-based Models: Represent data distributions using unnormal-
ized functions and address the challenge of computing the partition func-
tion.

• Score Matching: Bypass the intractable normalization constant by match-
ing gradients (scores) instead of densities directly.

• Denoising Score Matching: Introduce controlled noise to simplify com-
putation and improve efficiency.

• SDEs and ODEs: Provide a continuous-time perspective on the noising
process and derive deterministic mappings for efficient sampling.

• Langevin Dynamics as VAEs: Interpret sequential denoising through
the lens of variational autoencoders, connecting encoding and decoding
processes.

• Score-based Diffusion Models: Unify the above ideas into a framework
with a forward noising process and a learned reverse denoising process,
augmented by accelerated sampling techniques.

These insights not only deepen our theoretical understanding of generative mod-
eling but also pave the way for practical, scalable approaches to generating high-
quality samples. Future work may explore improved sampling algorithms, more
efficient training procedures, and novel applications of this unified framework.
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